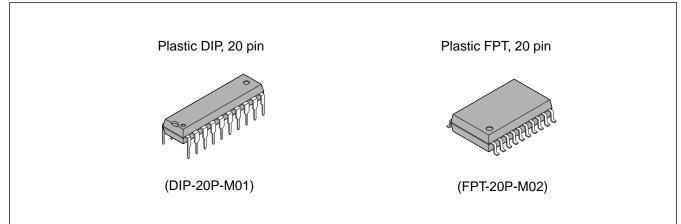
DS04-28205-2E

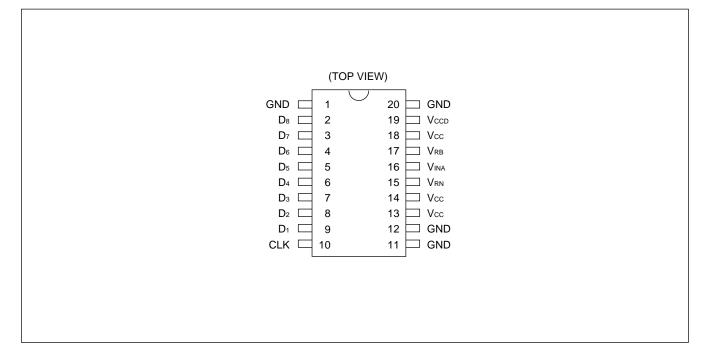
ASSP 1 CHANNEL 8-BIT VIDEO A/D CONVERTER

MB40558

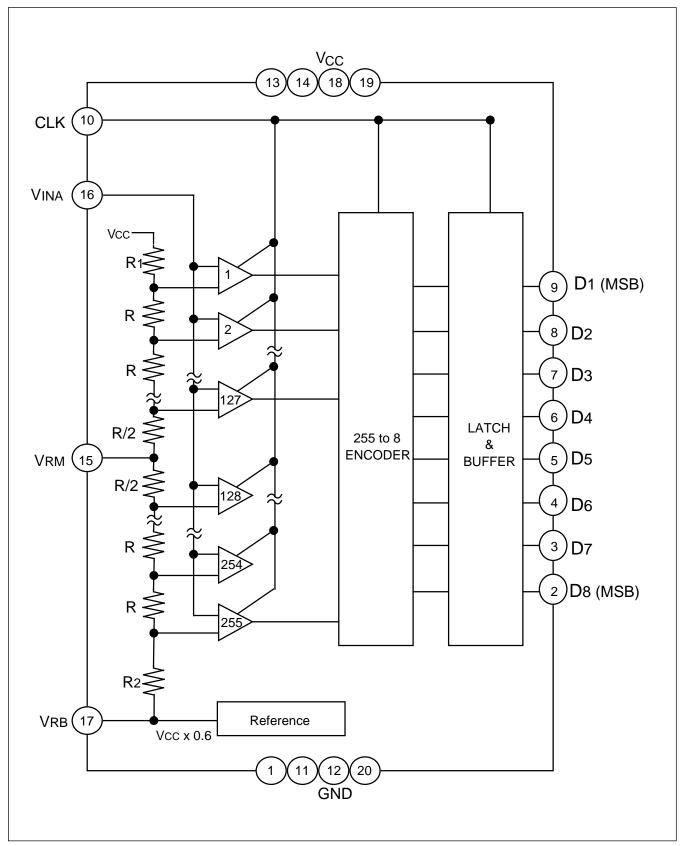

DESCRIPTION

The Fujitsu MB40558 is a low power ultra-high speed video A/D converter fabricated with Fujitsu Advanced Bipolar Technology. The MB40558 also adopts the fully-parallel comparision technique (flash method) for high speed conversion and can concert wide bandanalog signal such as video signal to digital signal at sampling rate of DC through 40 Mega-samples/sec. Because of such high speed operation, the MB40558 is suitable for digital video applications such as the digital TV, video processing with computer, or ladder signal processing.

■ FEATURES


Resolution:	8 bits
 Linearity Error: 	±0.15%
 Maximum Conversion Rate: 	40 MSPS (min.)
 Digital I/O Level: 	TTL Compatible
 Analog Input Voltage: 	3.0V to 5.0V(2Vp–p)
 Single Power Supply: 	5.0V
 Power dissipation: 	350 mW (typ.)
 Further Function: 	On Chip Reference Voltage Generator
Package:	Standard 20-pin Plastic DIP Package: Suffix: –P
	Standard 20-pin Plastic Flat Package: Suffix: -PF

PACKAGES


MB40558

■ PIN ASSIGNMENT

MB40558

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol Value		Unit
Power supply voltage	Vcc	-0.5 to +7.0	V
Digital input voltage	Vind	-0.5 to +7.0	V
Analog input voltage	Vina	-0.5 to Vcc +0.5	V
Storage temperature	Tstg	-55 to +150	°C

Note: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
		Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.75	5.00	5.25	V
Analog input voltage	Vina	Vrb	_	Vcc	V
Digital high-level output current	Іон	-400	_	—	μΑ
Digital low-level output current	lol	_	_	1.6	mA
Clock pulse width at high-level	tw+	11.5	_	—	ns
Clock pulse width at low-level	tw–	11.5	_	—	ns
Operating temperature	Та	-20	_	70	°C

■ ELECTRICAL CHARACTERISTICS

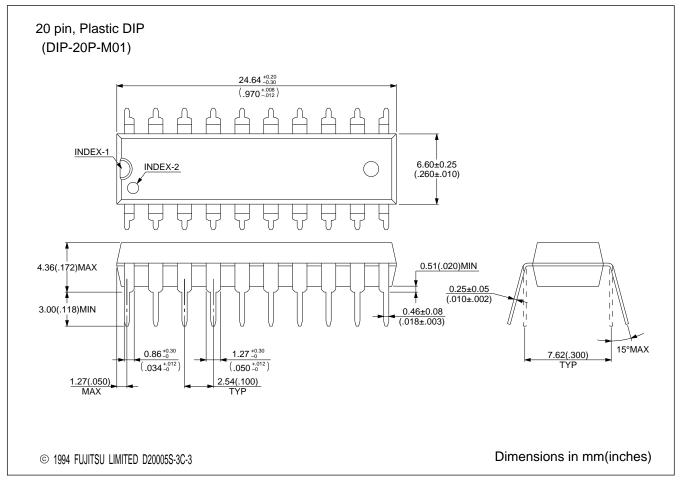
ANALOG DC CHARACTERISTICS

$(Vcc = 5V \pm 5\%, GND = 0V, Ta = -20 \text{ to } +70^{\circ}C$							
Parameter	Symbol		Unit				
		Min.	Тур.	Max.	onit		
Resolution	—	—	8		bits		
Linearrity error	LE	—	±0.15	±0.3	%		
Differential linearrity error	DLE	—	±0.12	—	%		
Equivalent resistance for analog input	Rina	0.18	2.8	_	MΩ		
Analog input capacitance	CINA	—	40	_	pF		
Analog high-level input current	Ііна	—	—	195	μA		
Analog low-level input current	IILA	—	_	185	μA		
Reference voltage	Vrb	0.6 imes Vcc - 0.1	0.6 imes Vcc	0.6 × Vcc +0.1	V		
Power supply current	lcc		70*	130	mA		

* : Vcc = 5.0V, Ta = +25°C

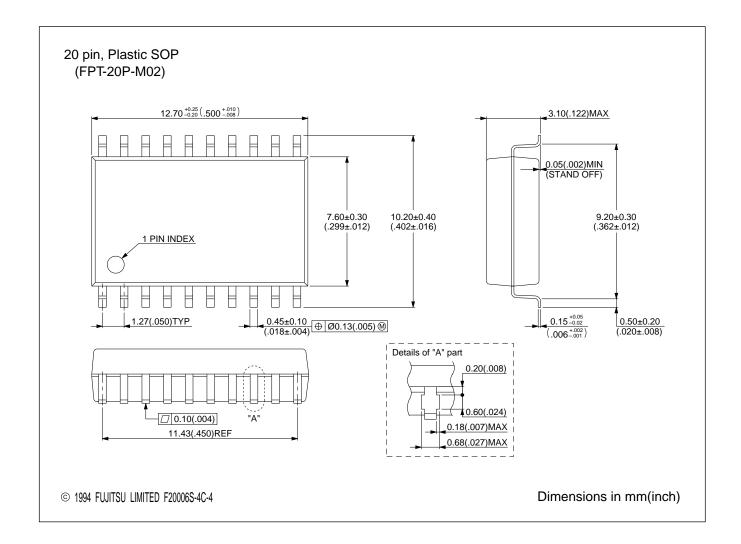
DIGITAL DC CHARACTERISTICS

		(Vcc = 5 V	±5%, GND =	= 0V, Ta = –2	0 to +70°C)
Parameter	Symbol	Value			Unit
		Min.	Тур.	Max.	Unit
High-level output voltage	Vонd	2.7	—	—	V
Low-level output voltage	Vold	—	_	0.4	V
High-level input voltage	Vihd	2.0	—	—	V
Low-level input voltage	Vild	_	_	0.8	V
High-level input current	Інд	—	_	20	μΑ
Low-level input current	lild	-100	_	_	μA


SWITCHING CHARACTERISTICS

 $(Vcc = 5 V \pm 5\%, GND = 0V, Ta = -20 to +70°C)$

Parameter	Symbol		Unit		
		Min.	Тур.	Max.	Unit
Maximum conversion rate	fs	40	_	_	MSPS
Digital output delay time	tpd	6	11	21	ns


MB40558

PACKAGE DIMENSIONS

To Top / Lineup / Index

MB40558

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.